Основные принципы и методики ирригации системы корневого канала в эндодонтии. Часть 1.

Стоматологические статьи
  • 21 марта 2012
  • 6621
Терапевтическая стоматология, Эндодонтия
Теория
А.В. Болячин, к. м. н.,, Москва.
Т.С. Беляева, врач-стоматолог, Москва.

 

Резюме.

Анализ причин неудач эндодонтического лечения привел к некоторому переосмыслению значения отдельных его этапов. Биологические предпосылки, такие как сложность внутренней морфологии зуба, а также внутриканальная биопленка заставляют вести поиск новых эффективных методов очистки корневых каналов. И в связи с этим на первый план выходит проблема качественной ирригации корневых каналов, как залога успешной эндодонтии. В статье приведены классификация и краткое описание основных методик ирригации в эндодонтии, даны практические рекомендации по применению наиболее популярных из них.

Ключевые слова: ирригация корневых каналов, ультразвуковая и звуковая ирригация, гидродинамическая ирригация, фотоактивируемая дезинфекция, внутриканальная биопленка.

Если проанализировать научную эндодонтическую литературу за последние несколько лет, становится совершенно очевидно, что в процессе эндодонтического лечения этапу ирригации уделяется огромное значение. За 2007 год только в журнале JOE (официальное издание Американской эндодонтической ассоциации) была опубликована 21 статья, посвященная технике ирригации и ирригационным растворам. С другой стороны, в настоящее время проводится колоссальное количество исследований, посвященных вращающимся NiTi инструментам, технике препарирования корневых каналов, сравнению различных систем между собой.

 Начало клинического применения  NiTi файлов сопровождалось некой «эйфорией», обусловленной  «практически неограниченными возможностями» этих инструментов.  Действительно, большая часть работ указывает на значительную разницу в качестве препарирования корневого канала, выполненного ручными инструментами и вращающимися NiTi системами. Тем не менее, использование современных методов исследования, таких как электронная микроскопия, микробиологические пробы и т.д. показали, что качественно очистить систему корневых каналов только за счет механического удаления инфицированного дентина и остатков пульпы эндодонтическими инструментами, будь то ручные или машинные файлы, не представляется возможным. (Dalton et al., 1998; Peters, 2001; Nair et al., 2005).

 

 

На сегодняшний день, эндодонтическая наука располагает обширными сведениями о строении системы корневых каналов. Известно, что внутренняя морфология зуба чрезвычайно сложна и разнообразна. Идеально круглый в поперечном сечении, конусовидный корневой канал с одним апикальным отверстием является, пожалуй,  редким исключением, нежели правилом. В подавляющем большинстве случаев каналы имеют неправильную форму, различный диаметр в букколингвальном и мезиодистальном направлении, многочисленные поднутрения, так называемые «плавники» (Рис.1, 2). Часто встречаются овальные или с-образные каналы. Кроме того, от основного канала на разных уровнях отходит множество латеральных канальцев. Латеральные канальцы встречаются и в области бифуркаций и трифуркаций многокорневых зубов. Между корневыми каналами имеются многочисленные анастомозы и перешейки, которые особенно часто встречаются, например, между мезиальными каналами моляров нижней челюсти. Очень сложна морфология апикальной трети корня. Известно, что основной канал в апикальной части образует дельту и открывается на верхушке корня не одним, а несколькими апикальными отверстиями. Исходя из вышесказанного, становится очевидным, что такую сложную систему не представляется возможным очистить только механическим способом. В связи с этим, огромное значение приобретает качественная и эффективная ирригация корневых каналов.
 

 
Рис.1. Проксимальный отдел овального канала премоляра нижней челюсти (так называемый «плавник»).
 

 
Рис.2. Перешеек, соединяющий щечный и небный каналы премоляра верхней челюсти. 

Другой важнейшей проблемой в дезинфекции корневых каналов является внутриканальная биопленка. Ее роль в прогнозе эндодонтического лечения сложно переоценить. Согласно современной концепции, микроогранизмы в корневых каналах присутствуют в виде бактериальной биопленки, что существенно изменяет их свойства и затрудняет их элиминацию из системы корневых каналов. Биопленка представляет собой сообщество микроорганизмов, окруженных внеклеточным полисахаридным матриксом и прикрепленных к влажной поверхности. Биопленка защищает присутствующие в ней микроогранизмы от воздействия неблагоприятных факторов, создает благоприятные условия для размножения, полисахаридный матрикс препятствует проникновению внутрь биопленки антибактериальных агентов, тем самым, повышая резистентность микробов к антисептикам и антибиотикам. Поэтому для элиминации биопленки необходимо сочетание как механического фактора, способного разрушить структуру биопленки, так и дезинфицирующего агента, уничтожающего входящие в ее состав микроорганизмы.

Таким образом, ирригация преследует две важнейшие цели:
1.    очищение системы корневых каналов за счет химического растворения органических и неорганических остатков, а также механического их вымывания струей жидкости;
2.    дезинфекция системы корневых каналов.
В связи с этим очистку системы корневых каналов следует рассматривать как важнейший этап эндодонтического лечения, оказывающий существенное влияние на  его прогноз. В свою очередь качественное препарирование и формирование корневого канала способствует созданию необходимого резервуара для ирригационного раствора и возможностей для его активации.
Все ирригационные техники можно разделить на 5 групп (Van der Sluis, 2007):
•    Ручная;
•    Ультразвуковая;
•    Звуковая (EndoActivator);
•    Лазерная (раствор активизируется лазером);
•    Гидродинамическая (RinsEndo, EndoVac).

Традиционные методы ирригации с помощью шприца и эндодонтической иглы обеспечивают удовлетворительную обработку корональной и средней трети корневого канала, но не обладают достаточной эффективностью с точки зрения очистки его стенок в области апекса (O’Connel, 2000). Для успешной ирригации необходимо, чтобы дезинфицирующий раствор доставлялся на всю рабочую длину корневого канала. Этого не всегда удается добиться с помощью классических  эндодонтических шприцов и игл, так как в узких корневых каналах благодаря поверхностному натяжению ирригационный раствор не доходит до апекса, оставляя так называемый «воздушный пузырь». В результате этого апикальная часть корневого канала остается недостаточно обработанной.

Существует ряд простых правил и приемов, которые позволяют сделать  ирригацию с помощью шприца более эффективной и предсказуемой.

Эффективность данного вида ирригации,  ограничивается расстоянием 3-4 мм от кончика иглы (Sedgley et al., 2005). Следовательно, чем ближе игла продвинута к апексу, тем выше качество очистки канала. С другой стороны, вероятность выведения ирригационного раствора за пределы апекса при этом также возрастает. С целью профилактики данного осложнения, очень важно иметь некоторое расстояние между кончиком иглы и стенкой корневого канала (Рис.3а, б).
 

  
                 Рис.3а.                                                    Рис.3б.

Рис.3. Движение ирригационного раствора в корневом канале: а – в широком корневом канале раствор распространяется вдоль стенок по направлению к устью канала; б – в узком корневом канале отсутствует пространство между стенкой канала и кончиком иглы и раствор вытекает в периапекс.

Следующим важным моментом являются движения иглы во время введения ирригационного раствора, а так же положение шприца. Ирригант должен выводиться медленно, аккуратно, при этом игла должна совершать возвратно-поступательные движения. Давить на поршень шприца рекомендуется  не большим, а указательным пальцем, так как тактильный контроль при этом значительно улучшается (Рис. 4а, б).
 

                 
                Рис.4а                                                 Рис.4б.

Рис.4. Положение пальцев и шприца при выполнении ирригации ручным способом: а – правильное; б – неправильное.

Глубина проникновения иглы, в свою очередь, обуславливается следующими факторами:
1.    Величиной апикального препарирования.
2.    Конусностью канала.
3.    Диаметром иглы.
Оптимальная  величина апикального препарирования для выполнения эффективной ирригации  должна составлять 30, 40 по ISO (Hsieh et al., 2007). Схематично, соотношение апикального размера и конусности можно представить следующим образом (Рис.5).
 

 
Рис.5. Зависимость диаметра корневого канала на различных уровнях от конусности применяемого инструмента (пояснение в тексте).

  После завершения препарирования канала  ручным файлом № 25 (конусность 2%) можно предположить, что  его диаметр  на расстоянии 3 мм  от верхушки будет 0,31 мм (0,25+0,02х3). При использовании же вращающегося никель-титанового файла с таким же размером верхушки, но конусностью 6%, диаметр канала на этом же уровне будет составлять уже 0, 43 мм (0,25+0,06 х3). На расстоянии 10 мм от верхушки, разница будет еще более значительной - 0,45 и 0,85мм соответственно. Таким образом, выраженная конусность  значительно улучшает эффективность ирригации, создавая дополнительное депо для раствора и позволяя  ему действовать на всем протяжении канала (Рис.6).
 

 
Рис.6. Применение конусных инструментов для обработки корневого канала повышает эффективность ирригации за счет создания резервуара для ирриганта.

Следующим важным фактором является диаметр иглы. Диаметр игл принято измерять в единицах называемых gauge. Наиболее часто используются эндодонтические иглы диаметром 27 gauge. Следует помнить, что при определении размера игл, наблюдается обратная зависимость. Чем больше цифра в gauge, тем меньше диаметр иглы (Таблица 1). Тонкие иглы Endo-Eze Tips и  NaviTip (Ultradent) имеют диаметр 29 gauge (0,28 мм), что позволяет продвинуть ее максимально к апексу (Рис.7).
 

 
Рис.7. Ирригационные иглы NaviTip (Ultradent).
 

ПРОДОЛЖЕНИЕ СТАТЬИ ЗДЕСЬ

Регулярно читаете статьи по специальности? Подпишитесь на нашу рассылку.

No comments yet